Candidate Name:

Chemistry

Sixth Form Academic Assessment

Sample paper

Time allowed : 1 hour

Instructions to Candidates

Candidates should answer <u>all</u> questions Some of the questions involve material you will NOT have studied. You should use the information in the question, and your own logical reasoning to answer them.

Further Information

You may use a calculator

You may detach the periodic table from the back of the paper for ease of use if you wish

Marking allocation

For examiner use only

	score	total
1		5
2		5
3		6
4		9
5		9
6		10
7		13
8		8
total		65

1. Give the formulae for the following chemical compounds:

(5)

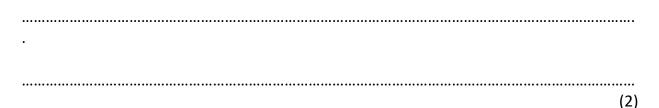
a) Silicon dioxide
b) Aluminium Carbonate
c) Copper (I) Oxide
d) Sodium Hydrogen carbonate
e) Silver Nitrate

2. Balance the following equations.

a)CH₄ +O₂
$$\rightarrow$$
C +H₂O (1)

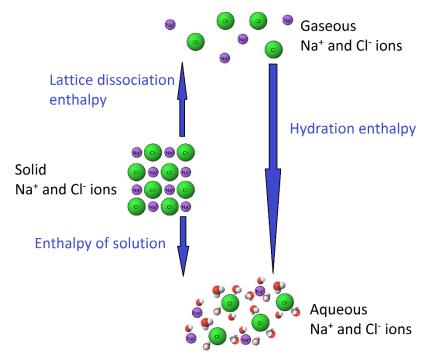
b) I_2 + $Na_2S_2O_3 \rightarrowNaI$ + ... $Na_2S_4O_6$ (2)

c)Fe₂O₃ +HCl
$$\rightarrow$$
FeCl₃ +H₂O (2)


- Ammonium dichromate is an explosive compound that decomposes exothermically to produce chromium oxide, nitrogen gas and steam.
 A wick made of a wooden splint soaked in ethanol is position in the centre of a small heap of ammonium dichromate. The wick is ignited to start the reaction.
 - a) Given that the equation below is correctly balanced, deduce the formula of the chromium oxide that forms.

$$(NH_4)_2Cr_2O_7_{(s)} \rightarrow \dots + N_{2(g)} + 4H_2O_{(g)}$$
 (1)

b) Explain why this reaction is **not** regarded as combustion, despite the reaction being started by igniting the ethanol splint wick.


c) Describe a test, and the expected result that could be carried out to demonstrate the presence of water vapour in the gases produced from this reaction.

d) The reaction is faster when the ammonium dichromate is used as a fine powder. Suggest why it would be dangerous to grind the ammonium dichromate powder to produce a fine powder.

4. The diagrams show the arrangement of ions in sodium chloride when it is in solid form, gaseous and dissolved.

The arrows are labelled to show the energy changes involved in converting between these forms.

a) The table gives data for two of the energy changes shown above.

	Hydration enthalpy of
of NaCl (kJmol ⁻¹)	NaCl (kJmol ⁻¹)
780	-784

Use the data to show that the enthalpy of solution for sodium chloride is -4 kJmol⁻¹.

b) Would you expect the temperature of water to increase or decrease when sodium chloride is added to it? Give a reason for your answer

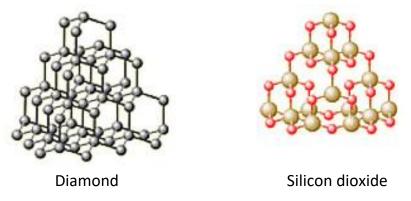
c) Derive a formula to calculate enthalpy of solution (ΔH_{sol}) from lattice dissociation enthalpy (ΔH_{diss}) and Hydration enthalpy (ΔH_{hyd}).

(1)

d) The enthalpy data for some other ionic compounds is given in the table. Use the data, and the formula you derived in part (c) to calculate the missing values in the table.

Compound	ΔH _{diss} (kJmol ⁻¹)	∆H _{hyd} (kJmol⁻¹)	ΔH_{sol} (kJmol ⁻¹)
MgCl ₂	2526	-2682	
CaCl ₂	2258	-2335	
AgCl	905		+54
КСІ	711		+13

(4)


e) Which of the compounds above dissolves most exothermically?

.....(1)

f) Use the data to suggest why AgCl is insoluble

5. Diamond and Silicon dioxide have similar structures. Both have very high melting points.

The diagram shows their structures.

a) Explain, with reference to the structure and bonding in diamond and silicon dioxide, why they both have high melting points.

b) Silicon dioxide is a solid at room temperature. It has the formula SiO₂.
 Carbon dioxide is a gas at room temperature. It has the formula CO₂.
 Explain, with reference to structure and bonding of Carbon dioxide, why it is a gas at room temperature.

(3)

c) Draw a dot and cross diagram to show the electron arrangement in CO₂. Show outer shells only.

d) Ethene and hydrazine have similar molar masses. They are both gases at room temperature.

Some information about Ethene and hydrazine is given in the table below.

Gas	Molar	Structure
	mass (g)	
Ethene	28	H H C=C H H
Hydrazine	32	Н Н_ _N NН Н

Suggest which molecule would have the higher boiling point. Give a reason for your answer.

Molecule with higher boiling point

Reason

6. Magnesium sulfate is used to draw infection out from wounds. It absorbs moisture from the skin around the wound, causing the skin to shrivel back, exposing the infection.

The magnesium sulfate works most effectively in this way when it is used as an anhydrous salt.

a) Describe how to safely prepare crystals of hydrated magnesium sulfate from magnesium carbonate and sulfuric acid.

b) A student wanted to find the formula of hydrated magnesium sulfate.
 She took a sample of hydrated magnesium sulfate and heated it to constant mass

The equation for the reaction that occurred is given below:

 $MgSO_4 \bullet nH_2O \rightarrow MgSO_4 + nH_2O$

The formula MgSO₄ \bullet nH₂O represents magnesium sulfate and its water of crystallisation.

The data she collected is given in the table below

Mass of hydrated magnesium	8.87 g
sulfate and crucible	
Final mass of anhydrous magnesium	8.15 g
sulfate and crucible	
Mass of empty crucible	5.75 g

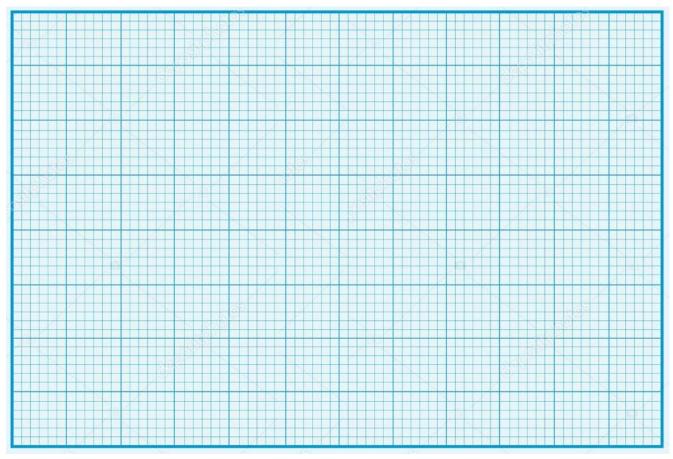
i. Why was it important to keep heating the magnesium sulfate to constant mass?

ii. Calculate the mass of water of crystallisation lost from the crystals

Mass of water of crystallization =	g
	(1)

iii. Use the data to calculate the formula of hydrated magnesium sulfate. [$M_r MgSO_4 = 120$, $M_r H_2O = 18$] 7. Metals and solutions can undertake displacement reactions. There is a temperature change while the reaction occurs.

A student measured 25cm³ of copper sulfate solution using a measuring cylinder and carried out a series of reactions.


In each reaction, she added a known mass of zinc powder to a fresh portion of the copper sulfate in a beaker.

She stirred the mixture and recorded the maximum temperature change.

The table below shows the data she collected.

Mass of Zn powder added (g)	0.50	1.00	1.50	2.00	2.50	3.00
Temperature rise (°C)	15.0	28.5	44.0	46.0	46.5	46.0

a) Use the grid below to plot the data. Choose sensible scales for the axes.

b) Draw a line of best fit through the first 3 points, and a second line of best fit through the remaining 3 points.
 Make sure both lines are extrapolated, so that the lines cross

Make sure both lines are extrapolated, so that the lines cross.

(1)

c) Explain why the temperature rise reaches a maximum, and then does not increase, despite more zinc being added.

.....

d) Use your graph to determine the precise minimum mass of zinc powder to produce the maximum temperature rise.

Minimum mass of zinc powder g (1)

- e) The copper sulfate solution used in the reaction was prepared by dissolving 31.90g CuSO₄ in 200 cm³ of water.
 - i. Determine the concentration in g/cm³ of copper sulfate in the solution that was prepared.

-g/cm³ (1)
- ii. Determine the mass of copper sulfate present in the 25cm³ of solution used.

Mass of CuSO₄ =g (1)

iii. Determine the volume of this copper sulfate solution that would be need to react with precisely 1.00g of Zinc powder

Volume of $CuSO_4$ solution =cm³ (1)

f) The energy produced in this reaction can be calculated using the formula

Q = mc∆T

where Q is the energy change in J m is the total mass of solution the thermometer is in c is the specific heat capacity of water, which is $4.2 \text{ J g}^{-1} \text{ °C}^{-1}$ ΔT is the maximum temperature change in °C

Calculate the maximum energy produced in this reaction (Assume the mass of solution is the mass of water in the solution only, do not include the mass of solvent)

Energy change =J (2)

g) The literature value for the energy change for this reaction is 5425 J.

Suggest **two** changes the student could make to her experiment to improve the accuracy of her data.

1	(2)

8. You are given samples of 4 chemicals. They are all soluble white powders.

The chemicals are : Potassium bromide Potassium sulfate Sodium sulfate Sodium carbonate.

The jars are labelled A, B, C and D. You do know which chemical is which.

You are required to describe some tests and the expected results that would enable you to find the identities of A, B, C and D.

The following tests may be useful:

Flame test		Sulfate test					
Potassium	Produce a lilac flame	Sulfate	Produce a white				
compounds	when held in a blue	compounds	precipitate when				
	Bunsen flame		$BaCl_{2(aq)}$ is added to a				
			solution of a sulfate				
Sodium	Produce a golden yellow	Other	Remain a colourless				
compounds	flame when held in a blue	compounds	solution when BaCl _{2(aq)}				
	Bunsen flame		is added				
Halide test		Carbonate tes	st				
Bromide	Produce a cream	Carbonate	Fizz when dilute HCl is				
compounds	precipitate when	compounds	added to the solid.				
	$AgNO_{3(aq)}$ is added to a		Gas produced turns				
	solution containing a		limewater cloudy				
	bromide						
Other non	Remain a colourless	Other	Do not fizz when				
halide	solution when AgNO _{3(aq)} is	compounds	dilute HCl is added				
compounds	added						

a) Which gas is produced when carbonate react with dilute HCl?

.....(1)

b) Deduce the identity of the white precipitate formed when BaCl_{2(aq)} is added to solutions containing sulfate compounds.

.....(1)

c) Use the information in the table to describe how to carry out a series of tests to determine the identity of A, B, C and D.

Make sure you say what the expected results would be that would enable you to deduce the identity of a compound.

(6)

The Periodic Table

¹ H ₁ Hydrogen													⁴ He ₂ Helium					
7Li ₃ Lithium	⁹ Be4 Beryllium											¹¹ B ₅ Boron	12 Car	C ₆ bon	¹⁴ N ₇ Nitrogen	¹⁶ O ₈ Oxygen	¹⁹ F9 Fluorine	²⁰ Ne ₁₀ Neon
²³ Na ₁₁ Sodium	²⁴ Mg ₁₂ Magnesium											²⁷ Al ₁₃ Aluminiur		5114 con	³¹ P ₁₅ Phosphorous	³² S ₁₆ Sulphur	^{35.5} Cl ₁₇ Chlorine	⁴⁰ Ar ₁₈ _{Argon}
³⁹ K ₁₉ Potassium	⁴⁰ Ca ₂₀ Calcium	⁴⁵ SC ₂₁ Scandium	⁴⁸ Ti ₂₂ Titanium	$^{51}V_{23}$ Vanadium	⁵² Cr ₂₄ Chromium	⁵⁵ Mn ₂₅ _{Manganese}	⁵⁶ Fe ₂₆ Iron	⁵⁹ CO ₂₇ Cobalt	⁵⁹ Ni ₂₈ Nickel	⁶⁴ Cu ₂ Copper) ⁷⁰ Ga ₃₁ Gallium		ie ₃₂ anium	⁷⁵ AS ₃₃ Arsenic	⁷⁹ Se ₃₄ Selenium	⁸⁰ Br ₃₅ Bromine	⁸⁴ Kr ₃₆ Krypton
⁸⁵ Rb ₃₇ Rubidium	⁸⁸ Sr ₃₈ Strontium	⁸⁹ Y ₃₉ Yttrium	⁹¹ Zr ₄₀ Zirconium	⁹³ Nb ₄₁ Niobium	⁹⁶ MO ₄₂ Molybdenum	⁹⁸ TC ₄₃ Technecium	¹⁰¹ RU44 Ruthenium	¹⁰³ Rh ₄₅ Rhodium	¹⁰⁶ Pd ₄₆ Palladium	¹⁰⁸ Agz Silver	7 ¹¹² Cd Cadmiu	-		50 in	¹²² Sb ₅₁ Antimony	¹²⁸ Te ₅₂ Tellurium	¹²⁷ ₅₃ Iodine	¹³¹ Xe ₅₄ Xenon
¹³³ CS ₅₅ Caesium	¹³⁷ Ba ₅₆ _{Barium}	Lanthanides	¹⁷⁸ Hf ₇₂ Hafnium	¹⁸¹ Ta ₇₃ Tantalum	¹⁸⁴ W74 Tungsten	¹⁸⁶ Re ₇₅ Rhenium	¹⁹⁰ OS ₇₆ Osmium	¹⁹² r ₇₇ Iridium	¹⁹⁵ Pt ₇₈ Platinum	¹⁹⁷ Au _{Gold}	9 ²⁰¹ Hg Mercur			Pb ₈₂ ad	²⁰⁹ Bi ₈₃ Bismuth	²⁰⁹ PO ₈₄ Polonium	²¹⁰ At ₈₅ Astatine	²²² Rn ₈₆ Radon
²²³ Fr ₈₇ Francium	²²⁶ Ra ₈₈ _{Radium}	Actinides	²⁶¹ Rf ₁₀₄ Rutherfordium															
	Lantha	nides 13	⁹ La ₅₇ ¹⁴⁰ Ce	8 ¹⁴¹ Pr59	¹⁴⁴ Nd ₆₀	¹⁴⁵ Pm ₆₁	¹⁵⁰ Sm ₆₂	¹⁵² Eu ₆₃	¹⁵⁷ Gd ₆₄	¹⁵⁹ Tb ₆₅	¹⁶³ Dy ₆₆	¹⁶⁵ H0 ₆₇ ¹	⁵⁷ Er ₆₈	¹⁶⁹ Tm ₆₉	¹⁷³ Yb ₇₀	¹⁷⁵ Lu ₇	1	

Lanthanides	¹³⁹ La ₅₇	¹⁴⁰ Ce ₅₈	¹⁴¹ Pr ₅₉	¹⁴⁴ Nd ₆₀	¹⁴⁵ Pm ₆₁	¹⁵⁰ Sm ₆₂	¹⁵² EU63	¹⁵⁷ Gd ₆₄	¹⁵⁹ Tb ₆₅	¹⁶³ Dy ₆₆	¹⁶⁵ HO ₆₇	¹⁶⁷ Er ₆₈	¹⁶⁹ Tm ₆₉	¹⁷³ Yb ₇₀	¹⁷⁵ LU71
	Lanthanium	Cerium	Praseodinium	Neodynium	Promethium	Samarium	Europium	Gadolinium	_{Terbium}	Dysprosium	Holmium	Erbium	Thallium	Ytterbium	Lutetium
Actinides	²²⁷ AC ₈₉	²³² Th ₉₀	²³¹ Pa ₉₁	²³⁸ U92	²³⁷ Np ₉₃	²⁴⁴ PU94	²⁴³ Am ₉₅	²⁴⁷ Cm ₉₆	²⁴⁷ Bk ₉₇	²⁵¹ Cf ₉₈	²⁵² ES ₉₉	²⁵⁷ Fm ₁₀₀	²⁵⁸ Md ₁₀₁	²⁵⁹ NO ₁₀₂	²⁶⁰ Lr ₁₀₃
	Actinium	Thorium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendeleevium	Nobelium	Lawrencium

Chemistry sample sixth form assessment paper.docx